Введите задачу...
Конечная математика Примеры
Этап 1
Чтобы найти экспоненциальную функцию, , график которой проходит через заданную точку, приравняем функцию значению , в заданной точке, а приравняем значению , в заданной точке.
Этап 2
Этап 2.1
Перепишем уравнение в виде .
Этап 2.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 2.3
Упростим показатель степени.
Этап 2.3.1
Упростим левую часть.
Этап 2.3.1.1
Упростим .
Этап 2.3.1.1.1
Перемножим экспоненты в .
Этап 2.3.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 2.3.1.1.1.2
Сократим общий множитель .
Этап 2.3.1.1.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.3.1.1.1.2.2
Вынесем множитель из .
Этап 2.3.1.1.1.2.3
Сократим общий множитель.
Этап 2.3.1.1.1.2.4
Перепишем это выражение.
Этап 2.3.1.1.1.3
Умножим на .
Этап 2.3.1.1.2
Упростим.
Этап 2.3.2
Упростим правую часть.
Этап 2.3.2.1
Упростим .
Этап 2.3.2.1.1
Изменим знак экспоненты, переписав основание в виде обратной величины.
Этап 2.3.2.1.2
Применим правило умножения к .
Этап 2.3.2.1.3
Возведем в степень .
Этап 2.3.2.1.4
Возведем в степень .
Этап 3
Подставим каждое значение в функцию , чтобы найти каждую возможную экспоненциальную функцию.